SEVERAL TOPOLOGIES ON $P(\omega)$

Miloš Kurilić Aleksandar Pavlović

Department for Mathematics and Informatics, Faculty of Sciences, Novi Sad
Winter School 2009.

The Boolean algebras $P(\kappa)$ are the only examples of atomic completely distributive complete Boolean algebras.

$P(\kappa)$

The Boolean algebras $P(\kappa)$ are the only examples of atomic completely distributive complete Boolean algebras.

Forcing by $P(\kappa)$ does not add new sets. This makes them almost uninteresting (Am I right or not?)
$P(\kappa)$ with the product topology
Topology No. 1

$P(\kappa)$ with the product topology Topology No. 1

Each subset of κ can be represented, by its characteristic function, as an element of the Cantor cube 2^{κ}.

$P(\kappa)$ with the product topology Topology No. 1

Each subset of κ can be represented, by its characteristic function, as an element of the Cantor cube 2^{κ}.

The product topology on 2^{κ} will be denoted by τ_{c}.

$P(\kappa)$ with the product topology Topology No. 1

Each subset of κ can be represented, by its characteristic function, as an element of the Cantor cube 2^{κ}.

The product topology on 2^{κ} will be denoted by τ_{c}.

The space $\left\langle 2^{\kappa}, \tau_{c}\right\rangle$ is a zero-dimensional, homogenous, Hausdorff and compact space.
\mathbb{B} with the sequential topology

\mathbb{B} with the sequential topology

For a sequence x let

$$
\limsup x=\bigwedge_{k \in \omega} \bigvee_{n \geq k} x_{n} \quad \liminf x=\bigvee_{k \in \omega} \bigwedge_{n \geq k} x_{n}
$$

A sequence x algebraically converges to a point $a\left(\lambda_{A}(x)=a\right)$ iff $\limsup x=\lim \inf x=a$

\mathbb{B} with the sequential topology

For a sequence x let

$$
\lim \sup x=\bigwedge_{k \in \omega} \bigvee_{n \geq k} x_{n} \quad \liminf x=\bigvee_{k \in \omega} \bigwedge_{n \geq k} x_{n}
$$

A sequence x algebraically converges to a point $a\left(\lambda_{A}(x)=a\right)$ iff $\limsup x=\lim \inf x=a$

The sequential topology τ_{s} is the maximal topology such that algebraic convergence implies topological convergence.

\mathbb{B} with the sequential topology

For a sequence x let

$$
\lim \sup x=\bigwedge_{k \in \omega} \bigvee_{n \geq k} x_{n} \quad \liminf x=\bigvee_{k \in \omega} \bigwedge_{n \geq k} x_{n}
$$

A sequence x algebraically converges to a point $a\left(\lambda_{A}(x)=a\right)$ iff $\limsup x=\lim \inf x=a$

The sequential topology τ_{s} is the maximal topology such that algebraic convergence implies topological convergence.
$\left\langle\mathbb{B}, \tau_{s}\right\rangle$ is a sequential T_{1} homogenous space
$\left\langle P(\kappa), \tau_{s}\right\rangle$
Topology No. 2

Theorem (B. Balcar, W. Glówczyński, T. Jech, 1998)
The space $\left\langle P(\kappa), \tau_{s}\right\rangle$ is:

- Hausdorff
- regular iff $\kappa=\omega$
- Fréchet iff $\kappa<\mathfrak{b}$
- sequentially compact iff $\kappa<\mathfrak{s}$
- compact iff $\kappa=\omega$
- zero-dimensional
- $\tau_{c} \subset \tau_{s}$
- $\tau_{c}=\tau_{s}$ iff $\kappa=\omega$
$\left\langle\mathbb{B}, \mathcal{O}^{\top}\right\rangle$

Let $\lambda^{\uparrow}(x)=(\lim \sup x) \uparrow$ be an a priori limit operator on a complete Boolean algebra \mathbb{B}.

Let $\lambda^{\uparrow}(x)=(\lim \sup x) \uparrow$ be an a priori limit operator on a complete Boolean algebra \mathbb{B}.

The maximal topology in which λ^{\uparrow}-convergence implies topological convergence is denoted by \mathcal{O}^{\uparrow}.

Let $\lambda^{\uparrow}(x)=(\lim \sup x) \uparrow$ be an a priori limit operator on a complete Boolean algebra \mathbb{B}.

The maximal topology in which λ^{\uparrow}-convergence implies topological convergence is denoted by \mathcal{O}^{\uparrow}.
$\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$ is a sequential connected T_{0} compact space, which is never T_{1}.
$\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$ and closed sets

$\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$ and closed sets

Closed sets are upward closed sets, i.e. $F=\bigcup_{b \in F}(b \uparrow)$ and closed to the infimums of decreasing sequences.

$\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$ and closed sets

Closed sets are upward closed sets, i.e. $F=\bigcup_{b \in F}(b \uparrow)$ and closed to the infimums of decreasing sequences.

Question
Can we minimize a set $A \subset F$ such that $F=\bigcup_{b \in A}(b \uparrow)$?
$\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$, closed sets and ccc

$\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$, closed sets and ccc

Theorem
If \mathbb{B} is a $c c c$ c.B.a., for each closed set F there holds

$$
F=\bigcup_{b \in \operatorname{Min}(F)}(b \uparrow)
$$

where $\operatorname{Min}(F)$ is the set of minimal elements of F.

$\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$, closed sets and ccc

Theorem
If \mathbb{B} is a $c c c$ c.B.a., for each closed set F there holds

$$
F=\bigcup_{b \in \operatorname{Min}(F)}(b \uparrow)
$$

where $\operatorname{Min}(F)$ is the set of minimal elements of F.

Example
If \mathbb{B} is not a ccc c.B.a., then there exists strictly decreasing sequence $\left\langle a_{\alpha}: \alpha<\omega_{1}\right\rangle$.

$$
\overline{\left\{a_{\alpha}: \alpha<\omega_{1}\right\}}=\bigcup_{\alpha<\omega_{1}}\left(a_{\alpha} \uparrow\right)
$$

but this set does not have minimal elements.

$\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$ and sets of form $\bigcup_{x \in X}\left(q_{x} \uparrow\right)$

4ロ＞4岛 $\downarrow 4 \equiv>4 \equiv \gg$ 引

$\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$ and sets of form $\bigcup_{x \in X}\left(q_{x} \uparrow\right)$

Lemma
Let X be a non empty set and $\left\{q_{x}: x \in X\right\} \subset \mathbb{B}$.
Let $\tau=\left\{\left\langle\check{x}, q_{x}\right\rangle: x \in X\right\}$ and $F=\bigcup_{x \in X}\left(q_{x} \uparrow\right)$.
If $x \neq y \Rightarrow q_{x} \neq q_{y}$, then the following conditions are equivalent:
(a) q_{x} and q_{y} are incomparable for different $x, y \in X$;
(b) $\forall x, y \in X(x \neq y \Rightarrow\|\check{x} \in \tau \not \supset \check{y}\|>0)$;
(c) $\left\{q_{x}: x \in X\right\}=\operatorname{Min}(F)$.

$\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$ and minimal elements

Example
A set of the form $\bigcup_{x \in X}\left(q_{x} \uparrow\right)$ must not be closed, even when $\left\{q_{x}: x \in X\right\}$ is the set of minimal elements.
If $\left\{q_{x}: x \in X\right\}$ is an infinite antichain then

$$
\overline{\bigcup_{x \in X}\left(q_{x} \uparrow\right)} \supset \overline{\left\{q_{x}: x \in X\right\}}=\mathbb{B}
$$

$\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$ and minimal elements

Example
A set of the form $\bigcup_{x \in X}\left(q_{x} \uparrow\right)$ must not be closed, even when $\left\{q_{x}: x \in X\right\}$ is the set of minimal elements.
If $\left\{q_{x}: x \in X\right\}$ is an infinite antichain then

$$
\overline{\bigcup_{x \in X}\left(q_{x} \uparrow\right)} \supset \overline{\left\{q_{x}: x \in X\right\}}=\mathbb{B}
$$

Question
When is the set of a form $\bigcup_{x \in X}\left(q_{x} \uparrow\right)$, where $\left\{q_{x}: x \in X\right\}$ is the set of its minimal elements, closed in the space $\left\langle\mathbb{B}, \mathcal{O}^{\uparrow}\right\rangle$?

Subbase countably compact spaces

Subbase countably compact spaces

Definition (J. Gerlits, I. Juhász, Z. Szentmiklóssy, 2001.)
Let $\langle X, \mathcal{O}\rangle$ be a topological space.
If \mathcal{S} is a subbase for the topology \mathcal{O}, the space $\langle X, \mathcal{O}\rangle$ is an \mathcal{S}-countably compact (\mathcal{S}-CC) space iff $\forall A \in[X]^{\omega} \exists x \in X \forall S \in \mathcal{S}(x \in S \Rightarrow|S \cap A|=\omega)$.
x is \mathcal{S}-accumulation point
$\langle X, \mathcal{O}\rangle$ is a subbase countably compact (SCC) space iff there exists a subbase \mathcal{S} for \mathcal{O} such that $\langle X, \mathcal{O}\rangle$ is an \mathcal{S}-CC space.

Subbase countably compact spaces

Definition (J. Gerlits, I. Juhász, Z. Szentmiklóssy, 2001.) Let $\langle X, \mathcal{O}\rangle$ be a topological space.
If \mathcal{S} is a subbase for the topology \mathcal{O}, the space $\langle X, \mathcal{O}\rangle$ is an \mathcal{S}-countably compact (\mathcal{S}-CC) space iff $\forall A \in[X]^{\omega} \exists x \in X \forall S \in \mathcal{S}(x \in S \Rightarrow|S \cap A|=\omega)$.
x is \mathcal{S}-accumulation point
$\langle X, \mathcal{O}\rangle$ is a subbase countably compact (SCC) space iff there exists a subbase \mathcal{S} for \mathcal{O} such that $\langle X, \mathcal{O}\rangle$ is an \mathcal{S}-CC space.

Theorem (J. Gerlits, I. Juhász, Z. Szentmiklóssy, 2001.)
Each Lindelöf SCC space is compact.

Subbase countably compact spaces

Definition
Let $X \neq \emptyset . \mathcal{S} \subset P(X)$ is a $T_{1} S C C$ subbase iff
(i) $\cup \mathcal{S}=X$;
(ii) $\forall x, y \in X(x \neq y \Rightarrow \exists S \in \mathcal{S}(x \in S \nexists y))$;
(iii) $\forall A \in[X]^{\omega} \exists x \in X \forall S \in \mathcal{S}(x \in S \Rightarrow|S \cap A|=\omega)$.

Subbase countably compact spaces

Definition
Let $X \neq \emptyset . \mathcal{S} \subset P(X)$ is a $T_{1} S C C$ subbase iff
(i) $\cup \mathcal{S}=X$;
(ii) $\forall x, y \in X(x \neq y \Rightarrow \exists S \in \mathcal{S}(x \in S \nexists y))$;
(iii) $\forall A \in[X]^{\omega} \exists x \in X \forall S \in \mathcal{S}(x \in S \Rightarrow|S \cap A|=\omega)$.

Topology generated by a countable T_{1} SCC subbase $\mathcal{S}=\left\{S_{k}: k \in \omega\right\}$ on X is T_{1} Hausdorff compact topology on X

Subbase countably compact spaces

Definition
Let $X \neq \emptyset . \mathcal{S} \subset P(X)$ is a $T_{1} S C C$ subbase iff
(i) $\cup \mathcal{S}=X$;
(ii) $\forall x, y \in X(x \neq y \Rightarrow \exists S \in \mathcal{S}(x \in S \nexists y))$;
(iii) $\forall A \in[X]^{\omega} \exists x \in X \forall S \in \mathcal{S}(x \in S \Rightarrow|S \cap A|=\omega)$.

Topology generated by a countable T_{1} SCC subbase $\mathcal{S}=\left\{S_{k}: k \in \omega\right\}$ on X is T_{1} Hausdorff compact topology on X and vice versa.

Subbase countably compact spaces

Definition
Let $X \neq \emptyset . \mathcal{S} \subset P(X)$ is a $T_{1} S C C$ subbase iff
(i) $\cup \mathcal{S}=X$;
(ii) $\forall x, y \in X(x \neq y \Rightarrow \exists S \in \mathcal{S}(x \in S \nexists y))$;
(iii) $\forall A \in[X]^{\omega} \exists x \in X \forall S \in \mathcal{S}(x \in S \Rightarrow|S \cap A|=\omega)$.

Topology generated by a countable T_{1} SCC subbase $\mathcal{S}=\left\{S_{k}: k \in \omega\right\}$ on X is T_{1} Hausdorff compact topology on X and vice versa.

If $\langle X, \mathcal{O}\rangle$ is a compact second-countable T_{1} space, then $|X| \leq \omega$ or $|X|=\boldsymbol{c}$.

A kind of "inverse" mapping

A kind of "inverse" mapping

Definition

For $f: X \rightarrow P(Y)$ let
$f^{*}: Y \rightarrow P(X)$ be defined by
$f^{*}(y)=\{x \in X: y \in f(x)\}$.

A kind of "inverse" mapping

Definition
For $f: X \rightarrow P(Y)$ let
$f^{*}: Y \rightarrow P(X)$ be defined by
$f^{*}(y)=\{x \in X: y \in f(x)\}$.

A kind of "inverse" mapping

Definition

For $f: X \rightarrow P(Y)$ let
$f^{*}: Y \rightarrow P(X)$ be defined by
$f^{*}(y)=\{x \in X: y \in f(x)\}$.

A kind of "inverse" mapping

Definition
For $f: X \rightarrow P(Y)$ let
$f^{*}: Y \rightarrow P(X)$ be defined by
$f^{*}(y)=\{x \in X: y \in f(x)\}$.

A kind of "inverse" mapping

Definition

For $f: X \rightarrow P(Y)$ let
$f^{*}: Y \rightarrow P(X)$ be defined by
$f^{*}(y)=\{x \in X: y \in f(x)\}$.

If $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n)=\{k \cdot n: k \in \mathbb{N}\}$ then

A kind of "inverse" mapping

Definition

For $f: X \rightarrow P(Y)$ let
$f^{*}: Y \rightarrow P(X)$ be defined by
$f^{*}(y)=\{x \in X: y \in f(x)\}$.

If $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n)=\{k \cdot n: k \in \mathbb{N}\}$ then

$$
f^{*}=\{k: k \text { is a divisor of } n\}
$$

For a mapping $B: X \rightarrow P(\omega)$ by $\tau^{B}=\left\{\left\langle\check{x}, B_{x}\right\rangle: x \in X\right\}$ we denote the corresponding nice name for a subset of X.

For a mapping $B: X \rightarrow P(\omega)$ by $\tau^{B}=\left\{\left\langle\check{x}, B_{x}\right\rangle: x \in X\right\}$ we denote the corresponding nice name for a subset of X.

If G is a $P(\omega)$-generic filter over V
then
$G=\{k\} \uparrow$ for some $k \in \omega$

For a mapping $B: X \rightarrow P(\omega)$ by $\tau^{B}=\left\{\left\langle\check{x}, B_{x}\right\rangle: x \in X\right\}$ we denote the corresponding nice name for a subset of X.

If G is a $P(\omega)$-generic filter over V and $S=B^{*}$, then
$G=\{k\} \uparrow$ for some $k \in \omega$ and $\left(\tau^{B}\right)_{G}=S_{k}$.

For a mapping $B: X \rightarrow P(\omega)$ by $\tau^{B}=\left\{\left\langle\check{x}, B_{x}\right\rangle: x \in X\right\}$ we denote the corresponding nice name for a subset of X.

If G is a $P(\omega)$-generic filter over V and $S=B^{*}$, then
$G=\{k\} \uparrow$ for some $k \in \omega$ and $\left(\tau^{B}\right)_{G}=S_{k}$.

Lemma

Let $B: X \rightarrow P(\omega)$ be one-to-one mapping and $S=B^{*}$. If $F=\bigcup_{x \in X}\left(B_{x} \uparrow\right)$, then the following conditions are equivalent:
(a) Elements $B_{x}, x \in X$, are incomparable;
(b) $\forall x, y \in X\left(x \neq y \Rightarrow \exists k \in \omega\left(x \in S_{k} \not \nexists y\right)\right)$;
(c) $\left\{B_{x}: x \in X\right\}=\operatorname{Min}(F)$.

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and closed sets

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and closed sets

Lemma
If $B: X \rightarrow P(\omega), S=B^{*}, \tau^{B}=\left\{\left\langle\check{x}, B_{x}\right\rangle: x \in X\right\}$ and
$F=\bigcup_{x \in X}\left(B_{x} \uparrow\right)$ then the following conditions are equivalent:
(a) F is closed in $P(\omega)$;
(b) $\forall f: \omega \rightarrow X \exists x \in X \quad B_{x} \subset \lim \sup \left\langle B_{f(n)}\right\rangle$;
(c) $\forall A \in[X]^{\omega} \exists x \in X 1 \Vdash \check{x} \in \tau^{B} \Rightarrow\left|\tau^{B} \cap \check{A}\right|=\check{\omega}$;
(d) $\forall A \in[X]^{\omega} \exists x \in X \forall k \in \omega\left(x \in S_{k} \Rightarrow\left|S_{k} \cap A\right|=\omega\right)$.

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and characterisation of closed stes

Theorem
If $B: X \rightarrow P(\omega), S=B^{*}$ and $F=\bigcup_{x \in X} B_{x} \uparrow$ then the following conditions are equivalent:
(a) $F \in \mathcal{F}^{\uparrow} \backslash\{\omega\}$;
(b) $\mathcal{S}=\left\{S_{k}: k \in \omega\right\}$ is a T_{1} SCC subbase (it generates some second countable compact topology on X);
(c) $\mathcal{S}=\left\{S_{k}: k \in \omega\right\}$ is a subbase for a T_{1} compact second countable topology on X.

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and characterisation of closed stes

Theorem
If $B: X \rightarrow P(\omega), S=B^{*}$ and $F=\bigcup_{x \in X} B_{x} \uparrow$ then the following conditions are equivalent:
(a) $F \in \mathcal{F}^{\uparrow} \backslash\{\omega\}$;
(b) $\mathcal{S}=\left\{S_{k}: k \in \omega\right\}$ is a T_{1} SCC subbase (it generates some second countable compact topology on X);
(c) $\mathcal{S}=\left\{S_{k}: k \in \omega\right\}$ is a subbase for a T_{1} compact second countable topology on X.

Theorem

If $F=\bigcup_{B \in \operatorname{Min}(F)} B \uparrow$ is closed in $P(\omega)$ then $|\operatorname{Min}(F)| \leq \omega$ or $|\operatorname{Min}(F)|=\mathfrak{c}$.

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and examples of closed sets

Example
We will construct a closed set on $P(\omega)$ using the cofinite topology on ω. Let $[\omega]^{<\omega}=\left\{K_{k}: k \in \omega\right\}$.

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and examples of closed sets

Example
We will construct a closed set on $P(\omega)$ using the cofinite topology on ω. Let $[\omega]^{<\omega}=\left\{K_{k}: k \in \omega\right\}$. A countable subbase is $S_{k}=\left\{\omega \backslash K_{k}: k \in \omega\right\}$.

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and examples of closed sets

Example
We will construct a closed set on $P(\omega)$ using the cofinite topology on ω. Let $[\omega]^{<\omega}=\left\{K_{k}: k \in \omega\right\}$.
A countable subbase is $S_{k}=\left\{\omega \backslash K_{k}: k \in \omega\right\}$.
Then $B_{n}=\left\{k \in \omega: n \notin K_{k}\right\}$ and it generates the closed set

$$
F=\bigcup_{n \in \omega}\left\{k \in \omega: n \notin K_{k}\right\} \uparrow .
$$

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and examples of closed sets

Example
We will construct a closed set on $P(\omega)$ using the cofinite topology on ω. Let $[\omega]^{<\omega}=\left\{K_{k}: k \in \omega\right\}$.
A countable subbase is $S_{k}=\left\{\omega \backslash K_{k}: k \in \omega\right\}$.
Then $B_{n}=\left\{k \in \omega: n \notin K_{k}\right\}$ and it generates the closed set

$$
F=\bigcup_{n \in \omega}\left\{k \in \omega: n \notin K_{k}\right\} \uparrow .
$$

Choosing another subbase, for instance, $\left\{S_{k}=\omega \backslash\{k\}: k \in \omega\right\}$, then $B_{n}=\omega \backslash\{n\}$ and we obtain the closed set

$$
F=\bigcup_{n \in \omega}(\omega \backslash\{n\}) \uparrow=\{A \subset \omega:|\omega \backslash A| \leq 1\}
$$

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and examples of closed sets

Example
Let $\left\{A_{n}: n \in \omega\right\} \subset P(\omega) \backslash\{\emptyset\}$ be a family of disjoint sets, and let $B_{n}=\omega \backslash A_{n}$.

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and examples of closed sets

Example
Let $\left\{A_{n}: n \in \omega\right\} \subset P(\omega) \backslash\{\emptyset\}$ be a family of disjoint sets, and let $B_{n}=\omega \backslash A_{n}$.
Let $F=\bigcup_{n \in \omega} B_{n} \uparrow$.
$B_{n}, n \in \omega$, are incomparable and F is closed.

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and examples of closed sets

Example
Let $\left\{A_{n}: n \in \omega\right\} \subset P(\omega) \backslash\{\emptyset\}$ be a family of disjoint sets, and let $B_{n}=\omega \backslash A_{n}$.
Let $F=\bigcup_{n \in \omega} B_{n} \uparrow$.
$B_{n}, n \in \omega$, are incomparable and F is closed.
Then $S_{k}=\left\{n \in \omega: k \in B_{n}\right\}=\left\{n \in \omega: k \notin A_{n}\right\}$.

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and examples of closed sets

Example
Let $\left\{A_{n}: n \in \omega\right\} \subset P(\omega) \backslash\{\emptyset\}$ be a family of disjoint sets, and let $B_{n}=\omega \backslash A_{n}$.
Let $F=\bigcup_{n \in \omega} B_{n} \uparrow$.
$B_{n}, n \in \omega$, are incomparable and F is closed.
Then $S_{k}=\left\{n \in \omega: k \in B_{n}\right\}=\left\{n \in \omega: k \notin A_{n}\right\}$.
If $k \in \omega \backslash \bigcup_{n \in \omega} A_{n}$, then $S_{k}=\omega$, otherwise, if $k \in A_{n}$, then $S_{k}=\omega \backslash\{n\}$.

$\left\langle\mathbb{P}(\omega), \mathcal{O}^{\uparrow}\right\rangle$ and examples of closed sets

Example
Let $\left\{A_{n}: n \in \omega\right\} \subset P(\omega) \backslash\{\emptyset\}$ be a family of disjoint sets, and let $B_{n}=\omega \backslash A_{n}$.
Let $F=\bigcup_{n \in \omega} B_{n} \uparrow$.
$B_{n}, n \in \omega$, are incomparable and F is closed.
Then $S_{k}=\left\{n \in \omega: k \in B_{n}\right\}=\left\{n \in \omega: k \notin A_{n}\right\}$.
If $k \in \omega \backslash \bigcup_{n \in \omega} A_{n}$, then $S_{k}=\omega$, otherwise, if $k \in A_{n}$, then $S_{k}=\omega \backslash\{n\}$.
We have obtained the same subbase as in the second part of previous example.

Using the a priori operator $\lambda^{\downarrow}(x)=(\lim \inf x) \downarrow$ we obtain the topology denoted by \mathcal{O}^{\downarrow}, which is, in sense od Boolean algebras, dual topology to \mathcal{O}^{\uparrow}

Definition
The family $\mathcal{P}^{*}=\mathcal{O}^{\uparrow} \cup \mathcal{O}^{\downarrow}$ is a subbase for a topology, namely \mathcal{O}^{*}.

Definition
The family $\mathcal{P}^{*}=\mathcal{O}^{\uparrow} \cup \mathcal{O}^{\downarrow}$ is a subbase for a topology, namely \mathcal{O}^{*}.

Theorem (Not just in $P(\omega)$)
$\lim _{\mathcal{O}^{*}}=\lim _{\tau_{s}}$.

Definition
The family $\mathcal{P}^{*}=\mathcal{O}^{\uparrow} \cup \mathcal{O}^{\downarrow}$ is a subbase for a topology, namely \mathcal{O}^{*}.

Theorem (Not just in $P(\omega)$)

$$
\lim _{\mathcal{O}^{*}}=\lim _{\tau_{s}}
$$

Question
When does it hold $\mathcal{O}^{*}=\tau_{s}$?

Definition
The family $\mathcal{P}^{*}=\mathcal{O}^{\uparrow} \cup \mathcal{O}^{\downarrow}$ is a subbase for a topology, namely \mathcal{O}^{*}.

Theorem (Not just in $P(\omega)$)

$$
\lim _{\mathcal{O}^{*}}=\lim _{\tau_{s}} .
$$

Question
When does it hold $\mathcal{O}^{*}=\tau_{s}$?

Theorem
On Boolean algebra $P(\omega)$ there holds $\mathcal{O}^{*}=\tau_{s}=\tau_{c}$.

嗇 J. Gerlits, I. Juhász, Z. Szentmiklóssy, Subbase countable compactness, Studia Sci. Math. Hungarica 38 (2001) 225-231.
國 B. Balcar, W. Glówczyński, T. Jech, The sequential topology on complete Boolean algebras, Fund. Math. 155 (1998) 59-78.

