SEVERAL TOPOLOGIES ON $P(\omega)$

Miloš Kurilić Aleksandar Pavlović

Department for Mathematics and Informatics, Faculty of Sciences, Novi Sad

Winter School 2009.

$P(\kappa)$

▲

The Boolean algebras $P(\kappa)$ are the only examples of atomic completely distributive complete Boolean algebras.

The Boolean algebras $P(\kappa)$ are the only examples of atomic completely distributive complete Boolean algebras.

Forcing by $P(\kappa)$ does not add new sets. This makes them almost uninteresting (Am I right or not?)

$P(\kappa)$ with the product topology Topology No. 1

$P(\kappa)$ with the product topology Topology No. 1

Each subset of κ can be represented, by its characteristic function, as an element of the Cantor cube 2^{κ} .

$P(\kappa)$ with the product topology Topology No. 1

Each subset of κ can be represented, by its characteristic function, as an element of the Cantor cube 2^{κ} .

The product topology on 2^{κ} will be denoted by τ_c .

Each subset of κ can be represented, by its characteristic function, as an element of the Cantor cube 2^{κ} .

The product topology on 2^{κ} will be denoted by τ_c .

The space $\langle 2^{\kappa}, \tau_c \rangle$ is a zero-dimensional, homogenous, Hausdorff and compact space.

(日) (四) (三) (三)

For a sequence x let

$$\limsup x = \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n \quad \liminf x = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n$$

A sequence x algebraically converges to a point a ($\lambda_A(x) = a$) iff lim sup $x = \lim \inf x = a$

(日)、(四)、(日)、(日)、

For a sequence x let

$$\limsup x = \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n \quad \liminf x = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n$$

A sequence x algebraically converges to a point a ($\lambda_A(x) = a$) iff lim sup $x = \liminf x = a$

The sequential topology τ_s is the maximal topology such that algebraic convergence implies topological convergence.

A □ > A □ > A □ > A □ >

For a sequence x let

$$\limsup x = \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n \quad \liminf x = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n$$

A sequence x algebraically converges to a point a ($\lambda_A(x) = a$) iff lim sup $x = \liminf x = a$

The sequential topology τ_s is the maximal topology such that algebraic convergence implies topological convergence.

 $\langle \mathbb{B}, \tau_s \rangle$ is a sequential T_1 homogenous space

 $\langle P(\kappa), \tau_s \rangle$ Topology No. 2

・ロト ・ 画 ・ ・ 画 ・ ・ 目 ・ うへぐ

Theorem (B. Balcar, W. Glówczyński, T. Jech, 1998) The space $\langle P(\kappa), \tau_s \rangle$ is:

- Hausdorff
- regular iff $\kappa = \omega$
- Fréchet iff $\kappa < \mathfrak{b}$
- sequentially compact iff $\kappa < \mathfrak{s}$
- compact iff $\kappa = \omega$
- zero-dimensional
- $\tau_c \subset \tau_s$

•
$$\tau_c = \tau_s$$
 iff $\kappa = \omega$

Let $\lambda^{\uparrow}(x) = (\limsup x) \uparrow$ be an a priori limit operator on a complete Boolean algebra \mathbb{B} .

Let $\lambda^{\uparrow}(x) = (\limsup x) \uparrow$ be an a priori limit operator on a complete Boolean algebra \mathbb{B} .

The maximal topology in which λ^{\uparrow} -convergence implies topological convergence is denoted by \mathcal{O}^{\uparrow} .

Let $\lambda^{\uparrow}(x) = (\limsup x) \uparrow$ be an a priori limit operator on a complete Boolean algebra \mathbb{B} .

The maximal topology in which λ^{\uparrow} -convergence implies topological convergence is denoted by \mathcal{O}^{\uparrow} .

 $\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$ is a sequential connected T_0 compact space, which is never T_1 .

(□) (圖) (E) (E)

$\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$ and closed sets

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$ and closed sets

Closed sets are upward closed sets, i.e. $F = \bigcup_{b \in F} (b\uparrow)$ and closed to the infimums of decreasing sequences.

$\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$ and closed sets

Closed sets are upward closed sets, i.e. $F = \bigcup_{b \in F} (b\uparrow)$ and closed to the infimums of decreasing sequences.

Question

Can we minimize a set $A \subset F$ such that $F = \bigcup_{b \in A} (b\uparrow)$?

$\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$, closed sets and *ccc*

$\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$, closed sets and *ccc*

Theorem

If $\mathbb B$ is a ccc c.B.a., for each closed set F there holds

$$F = \bigcup_{b \in \operatorname{Min}(F)} (b \uparrow),$$

where Min(F) is the set of minimal elements of F.

$\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$, closed sets and *ccc*

Theorem

If \mathbb{B} is a *ccc* c.B.a., for each closed set *F* there holds

$$F = \bigcup_{b \in \operatorname{Min}(F)} (b\uparrow),$$

where Min(F) is the set of minimal elements of F.

Example

If \mathbb{B} is not a ccc c.B.a., then there exists strictly decreasing sequence $\langle a_{\alpha} : \alpha < \omega_1 \rangle$.

$$\overline{\{a_{\alpha}:\alpha<\omega_1\}}=\bigcup_{\alpha<\omega_1}(a_{\alpha}\uparrow)$$

but this set does not have minimal elements.

$\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$ and sets of form $\bigcup_{x \in X} (q_x \uparrow)$

$\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$ and sets of form $\bigcup_{x \in X} (q_x \uparrow)$

Lemma

Let X be a non empty set and $\{q_x : x \in X\} \subset \mathbb{B}$. Let $\tau = \{\langle \check{x}, q_x \rangle : x \in X\}$ and $F = \bigcup_{x \in X} (q_x \uparrow)$. If $x \neq y \Rightarrow q_x \neq q_y$, then the following conditions are equivalent:

・ロッ ・雪 ・ ・ ヨ ・

(a) qx and qy are incomparable for different x, y ∈ X;
(b) ∀x, y ∈ X (x ≠ y ⇒ ||x̃ ∈ τ ≇ ỹ|| > 0);
(c) {qx : x ∈ X} = Min(F).

$\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$ and minimal elements

Example

A set of the form $\bigcup_{x \in X} (q_x \uparrow)$ must not be closed, even when $\{q_x : x \in X\}$ is the set of minimal elements. If $\{q_x : x \in X\}$ is an infinite antichain then

$$\overline{\bigcup_{x\in X}(q_x\uparrow)}\supset\overline{\{q_x:x\in X\}}=\mathbb{B}$$

(日) (四) (三) (三)

$\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$ and minimal elements

Example

A set of the form $\bigcup_{x \in X} (q_x \uparrow)$ must not be closed, even when $\{q_x : x \in X\}$ is the set of minimal elements. If $\{q_x : x \in X\}$ is an infinite antichain then

$$\overline{\bigcup_{x\in X}(q_x\uparrow)}\supset\overline{\{q_x:x\in X\}}=\mathbb{B}$$

Question

When is the set of a form $\bigcup_{x \in X} (q_x \uparrow)$, where $\{q_x : x \in X\}$ is the set of its minimal elements, closed in the space $\langle \mathbb{B}, \mathcal{O}^{\uparrow} \rangle$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition (J. Gerlits, I. Juhász, Z. Szentmiklóssy, 2001.) Let $\langle X, \mathcal{O} \rangle$ be a topological space.

If S is a subbase for the topology O, the space $\langle X, O \rangle$ is an S-countably compact (S-CC) space iff $\forall A \in [X]^{\omega} \exists x \in X \forall S \in S (x \in S \Rightarrow |S \cap A| = \omega).$ x is S-accumulation point

 $\langle X, \mathcal{O} \rangle$ is a subbase countably compact (SCC) space iff there exists a subbase S for \mathcal{O} such that $\langle X, \mathcal{O} \rangle$ is an S-CC space.

Definition (J. Gerlits, I. Juhász, Z. Szentmiklóssy, 2001.) Let $\langle X, \mathcal{O} \rangle$ be a topological space.

If S is a subbase for the topology O, the space $\langle X, O \rangle$ is an S-countably compact (S-CC) space iff $\forall A \in [X]^{\omega} \exists x \in X \forall S \in S (x \in S \Rightarrow |S \cap A| = \omega).$ x is S-accumulation point

 $\langle X, \mathcal{O} \rangle$ is a subbase countably compact (SCC) space iff there exists a subbase S for \mathcal{O} such that $\langle X, \mathcal{O} \rangle$ is an S-CC space.

Theorem (J. Gerlits, I. Juhász, Z. Szentmiklóssy, 2001.) Each Lindelöf SCC space is compact.

・ロッ ・雪 ・ ・ ヨ ・ ・ ロ ・

Definition

Let $X \neq \emptyset$. $\mathcal{S} \subset P(X)$ is a T_1 SCC subbase iff

(i)
$$\bigcup \mathcal{S} = X;$$

(ii) $\forall x, y \in X \ (x \neq y \Rightarrow \exists S \in \mathcal{S} \ (x \in S \not\ni y));$

(iii) $\forall A \in [X]^{\omega} \exists x \in X \, \forall S \in \mathcal{S} \, (x \in S \Rightarrow |S \cap A| = \omega).$

・ロト ・ 一下・ ・ ヨト

Definition Let $X \neq \emptyset$. $S \subset P(X)$ is a T_1 SCC subbase iff (i) $\bigcup S = X$; (ii) $\forall x, y \in X \ (x \neq y \Rightarrow \exists S \in S \ (x \in S \not\ni y))$; (iii) $\forall A \in [X]^{\omega} \exists x \in X \ \forall S \in S \ (x \in S \Rightarrow |S \cap A| = \omega)$.

Topology generated by a countable T_1 SCC subbase $S = \{S_k : k \in \omega\}$ on X is T_1 Hausdorff compact topology on X

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Definition Let $X \neq \emptyset$. $S \subset P(X)$ is a T_1 SCC subbase iff (i) $\bigcup S = X$; (ii) $\forall x, y \in X \ (x \neq y \Rightarrow \exists S \in S \ (x \in S \not\ni y))$; (iii) $\forall A \in [X]^{\omega} \exists x \in X \ \forall S \in S \ (x \in S \Rightarrow |S \cap A| = \omega)$.

Topology generated by a countable T_1 SCC subbase $S = \{S_k : k \in \omega\}$ on X is T_1 Hausdorff compact topology on X and vice versa.

イロト 不得下 イヨト イヨト

Definition
Let
$$X \neq \emptyset$$
. $S \subset P(X)$ is a T_1 SCC subbase iff
(i) $\bigcup S = X$;
(ii) $\forall x, y \in X \ (x \neq y \Rightarrow \exists S \in S \ (x \in S \not\ni y))$;
(iii) $\forall A \in [X]^{\omega} \exists x \in X \ \forall S \in S \ (x \in S \Rightarrow |S \cap A| = \omega)$.

Topology generated by a countable T_1 SCC subbase $S = \{S_k : k \in \omega\}$ on X is T_1 Hausdorff compact topology on X and vice versa.

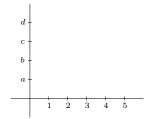
If $\langle X, \mathcal{O} \rangle$ is a compact second-countable T_1 space, then $|X| \leq \omega$ or $|X| = \mathfrak{c}$.

A kind of "inverse" mapping

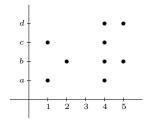
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

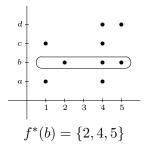
Definition

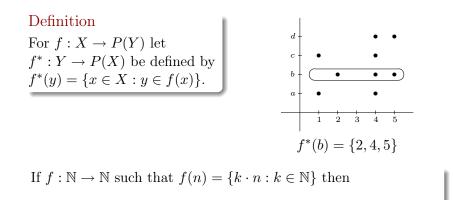


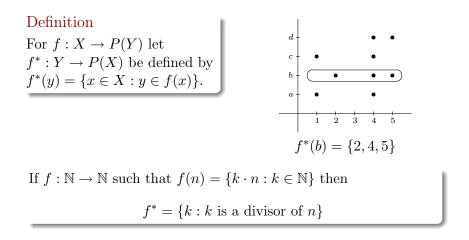
Definition



Definition







・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For a mapping $B: X \to P(\omega)$ by $\tau^B = \{\langle \check{x}, B_x \rangle : x \in X\}$ we denote the corresponding nice name for a subset of X.

・ロト ・ 一下・ ・ ヨト

 $\langle \mathbb{P}(\omega), \mathcal{O}^{\uparrow} \rangle$ Topology No. 3

> For a mapping $B: X \to P(\omega)$ by $\tau^B = \{\langle \check{x}, B_x \rangle : x \in X\}$ we denote the corresponding nice name for a subset of X. If G is a $P(\omega)$ -generic filter over V then $G = \{k\} \uparrow$ for some $k \in \omega$

 $\langle \mathbb{P}(\omega), \mathcal{O}^{\uparrow} \rangle$ Topology No. 3

For a mapping $B: X \to P(\omega)$ by $\tau^B = \{\langle \check{x}, B_x \rangle : x \in X\}$ we denote the corresponding nice name for a subset of X.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

If G is a $P(\omega)$ -generic filter over V and $S = B^*$, then $G = \{k\} \uparrow$ for some $k \in \omega$ and $(\tau^B)_G = S_k$.

 $\langle \mathbb{P}(\omega), \mathcal{O}^{\uparrow} \rangle$ Topology No. 3

For a mapping $B: X \to P(\omega)$ by $\tau^B = \{\langle \check{x}, B_x \rangle : x \in X\}$ we denote the corresponding nice name for a subset of X.

If G is a $P(\omega)$ -generic filter over V and $S = B^*$, then $G = \{k\} \uparrow$ for some $k \in \omega$ and $(\tau^B)_G = S_k$.

Lemma

Let $B: X \to P(\omega)$ be one-to-one mapping and $S = B^*$. If $F = \bigcup_{x \in X} (B_x \uparrow)$, then the following conditions are equivalent: (a) Elements $B_x, x \in X$, are incomparable; (b) $\forall x, y \in X \ (x \neq y \Rightarrow \exists k \in \omega \ (x \in S_k \not\ni y));$ (c) $\{B_x : x \in X\} = \operatorname{Min}(F).$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Lemma

If
$$B: X \to P(\omega), S = B^*, \tau^B = \{\langle \check{x}, B_x \rangle : x \in X\}$$
 and
 $F = \bigcup_{x \in X} (B_x \uparrow)$ then the following conditions are equivalent:
(a) F is closed in $P(\omega)$;
(b) $\forall f: \omega \to X \exists x \in X \ B_x \subset \limsup \langle B_{f(n)} \rangle$;
(c) $\forall A \in [X]^{\omega} \exists x \in X \ 1 \Vdash \check{x} \in \tau^B \Rightarrow |\tau^B \cap \check{A}| = \check{\omega}$;
(d) $\forall A \in [X]^{\omega} \exists x \in X \ \forall k \in \omega \ (x \in S_k \Rightarrow |S_k \cap A| = \omega)$.

・ロト・4回ト・ミト・ミト ヨージッへの

$\langle \mathbb{P}(\omega), \mathcal{O}^{\uparrow} \rangle$ and characterisation of closed stes

Theorem

If $B: X \to P(\omega)$, $S = B^*$ and $F = \bigcup_{x \in X} B_x \uparrow$ then the following conditions are equivalent:

- (a) $F \in \mathcal{F}^{\uparrow} \setminus \{\omega\};$
- (b) $S = \{S_k : k \in \omega\}$ is a T_1 SCC subbase (it generates some second countable compact topology on X);

(c) $S = \{S_k : k \in \omega\}$ is a subbase for a T_1 compact second countable topology on X.

$\langle \mathbb{P}(\omega), \mathcal{O}^{\uparrow} \rangle$ and characterisation of closed stes

Theorem

If $B: X \to P(\omega)$, $S = B^*$ and $F = \bigcup_{x \in X} B_x \uparrow$ then the following conditions are equivalent:

- (a) $F \in \mathcal{F}^{\uparrow} \setminus \{\omega\};$
- (b) $S = \{S_k : k \in \omega\}$ is a T_1 SCC subbase (it generates some second countable compact topology on X);
- (c) $S = \{S_k : k \in \omega\}$ is a subbase for a T_1 compact second countable topology on X.

Theorem

If $F = \bigcup_{B \in Min(F)} B \uparrow$ is closed in $P(\omega)$ then $|Min(F)| \le \omega$ or $|Min(F)| = \mathfrak{c}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Example

We will construct a closed set on $P(\omega)$ using the cofinite topology on ω . Let $[\omega]^{<\omega} = \{K_k : k \in \omega\}.$

Example

We will construct a closed set on $P(\omega)$ using the cofinite topology on ω . Let $[\omega]^{<\omega} = \{K_k : k \in \omega\}$. A countable subbase is $S_k = \{\omega \setminus K_k : k \in \omega\}$.

Example

We will construct a closed set on $P(\omega)$ using the cofinite topology on ω . Let $[\omega]^{<\omega} = \{K_k : k \in \omega\}$. A countable subbase is $S_k = \{\omega \setminus K_k : k \in \omega\}$. Then $B_n = \{k \in \omega : n \notin K_k\}$ and it generates the closed set

$$F = \bigcup_{n \in \omega} \{k \in \omega : n \notin K_k\} \uparrow.$$

Example

We will construct a closed set on $P(\omega)$ using the cofinite topology on ω . Let $[\omega]^{<\omega} = \{K_k : k \in \omega\}$. A countable subbase is $S_k = \{\omega \setminus K_k : k \in \omega\}$. Then $B_n = \{k \in \omega : n \notin K_k\}$ and it generates the closed set

$$F = \bigcup_{n \in \omega} \{k \in \omega : n \notin K_k\} \uparrow.$$

Choosing another subbase, for instance, $\{S_k = \omega \setminus \{k\} : k \in \omega\}$, then $B_n = \omega \setminus \{n\}$ and we obtain the closed set

$$F = \bigcup_{n \in \omega} (\omega \setminus \{n\}) \uparrow = \{A \subset \omega : |\omega \setminus A| \le 1\}.$$

Example

Let $\{A_n : n \in \omega\} \subset P(\omega) \setminus \{\emptyset\}$ be a family of disjoint sets, and let $B_n = \omega \setminus A_n$.

A 日 > A 图 > A 图 > A 图 >

Example

Let $\{A_n : n \in \omega\} \subset P(\omega) \setminus \{\emptyset\}$ be a family of disjoint sets, and let $B_n = \omega \setminus A_n$. Let $F = \bigcup_{n \in \omega} B_n \uparrow$. $B_n, n \in \omega$, are incomparable and F is closed.

Example

Let $\{A_n : n \in \omega\} \subset P(\omega) \setminus \{\emptyset\}$ be a family of disjoint sets, and let $B_n = \omega \setminus A_n$. Let $F = \bigcup_{n \in \omega} B_n \uparrow$. $B_n, n \in \omega$, are incomparable and F is closed. Then $S_k = \{n \in \omega : k \in B_n\} = \{n \in \omega : k \notin A_n\}.$

Example

Let $\{A_n : n \in \omega\} \subset P(\omega) \setminus \{\emptyset\}$ be a family of disjoint sets, and let $B_n = \omega \setminus A_n$. Let $F = \bigcup_{n \in \omega} B_n \uparrow$. $B_n, n \in \omega$, are incomparable and F is closed. Then $S_k = \{n \in \omega : k \in B_n\} = \{n \in \omega : k \notin A_n\}$. If $k \in \omega \setminus \bigcup_{n \in \omega} A_n$, then $S_k = \omega$, otherwise, if $k \in A_n$, then $S_k = \omega \setminus \{n\}$.

Example

Let $\{A_n : n \in \omega\} \subset P(\omega) \setminus \{\emptyset\}$ be a family of disjoint sets, and let $B_n = \omega \setminus A_n$. Let $F = \bigcup_{n \in \omega} B_n \uparrow$. $B_n, n \in \omega$, are incomparable and F is closed. Then $S_k = \{n \in \omega : k \in B_n\} = \{n \in \omega : k \notin A_n\}$. If $k \in \omega \setminus \bigcup_{n \in \omega} A_n$, then $S_k = \omega$, otherwise, if $k \in A_n$, then $S_k = \omega \setminus \{n\}$. We have obtained the same subbase as in the second part of

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

previous example.

Using the a priori operator $\lambda^{\downarrow}(x) = (\liminf x) \downarrow$ we obtain the topology denoted by \mathcal{O}^{\downarrow} , which is, in sense of Boolean algebras, dual topology to \mathcal{O}^{\uparrow}

・ロア ・雪 ア ・ 田 ア

・ロト ・ 画 ・ ・ 画 ・ ・ 目 ・ うへぐ

The family $\mathcal{P}^* = \mathcal{O}^{\uparrow} \cup \mathcal{O}^{\downarrow}$ is a subbase for a topology, namely \mathcal{O}^* .

The family $\mathcal{P}^* = \mathcal{O}^{\uparrow} \cup \mathcal{O}^{\downarrow}$ is a subbase for a topology, namely \mathcal{O}^* .

Theorem (Not just in $P(\omega)$)

 $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$.

The family $\mathcal{P}^* = \mathcal{O}^{\uparrow} \cup \mathcal{O}^{\downarrow}$ is a subbase for a topology, namely \mathcal{O}^* .

Theorem (Not just in $P(\omega)$)

 $\lim_{\mathcal{O}^*} = \lim_{\tau_s}.$

・ロア ・雪 ア ・ 田 ア

ъ

Question

When does it hold $\mathcal{O}^* = \tau_s$?

The family $\mathcal{P}^* = \mathcal{O}^{\uparrow} \cup \mathcal{O}^{\downarrow}$ is a subbase for a topology, namely \mathcal{O}^* .

Theorem (Not just in $P(\omega)$)

 $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$.

Question

When does it hold $\mathcal{O}^* = \tau_s$?

Theorem

On Boolean algebra $P(\omega)$ there holds $\mathcal{O}^* = \tau_s = \tau_c$.

•

э

- J. Gerlits, I. Juhász, Z. Szentmiklóssy, Subbase countable compactness, Studia Sci. Math. Hungarica 38 (2001) 225–231.
- B. Balcar, W. Glówczyński, T. Jech, The sequential topology on complete Boolean algebras, Fund. Math. 155 (1998) 59–78.

