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Forcing by P(x) does not add new sets. This makes them
almost uninteresting (Am I right or not?)
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P(k) with the product topology

Topology No. 1

Each subset of k can be represented, by its characteristic
function, as an element of the Cantor cube 2~. J
The product topology on 2" will be denoted by 7. J

The space (2%, 7.) is a zero-dimensional, homogenous, Hausdorff
and compact space.
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v

A sequence z algebraically converges to a point a (As(z) = a) iff
limsupz = liminfz = a
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For a sequence z let

limsupx = /\ \/xn liminfz = \/ /\xn

kew n>k kewn>k

v

A sequence z algebraically converges to a point a (As(z) = a) iff
limsupz = liminfz = a

4

The sequential topology 75 is the maximal topology such that
algebraic convergence implies topological convergence.

(B, 75) is a sequential 71 homogenous space J
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Topology No. 2

Theorem (B. Balcar, W. Glowczyniski, T. Jech, 1998)
The space (P(k),Ts) is:

e Hausdorff

o regular iff Kk = w

e Fréchet iff Kk < b

e sequentially compact iff K < s

e compact iff Kk = w

e zero-dimensional

o 7. C Ty

e .=T, i k=w
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(B,0O")

Let AT(z) = (limsupx) T be an a priori limit operator on a
complete Boolean algebra B.

The maximal topology in which A'-convergence implies
topological convergence is denoted by O.

(B, OT> is a sequential connected Ty compact space, which is
never 17.
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(B, O") and closed sets

Closed sets are upward closed sets, i.e. F'=|J,cp(bT) and
closed to the infimums of decreasing sequences.

Question
Can we minimize a set A C I’ such that F' = (J, 4(b7)7




(B, O1), closed sets and cce



(B, O1), closed sets and cce

Theorem
If B is a ccc c.B.a., for each closed set F' there holds

F = Upemtinr) (1),
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(B, O1), closed sets and cce

Theorem
If B is a ccc c.B.a., for each closed set F' there holds

F = Upemtinr) (1),

where Min(F') is the set of minimal elements of F'.

Example

If B is not a ccc c.B.a., then there exists strictly decreasing
sequence (aq : o < wi).

{aa ta <wi} = Uy, (@aT)

but this set does not have minimal elements.
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(B, O") and sets of form J,x(q: T)

Lemma

Let X be a non empty set and {¢, : 2 € X} C B.

Let 7= {(#,¢s) : 2 € X} and F =, x(¢z 1).
If + #y = g» # qy, then the following conditions are equivalent:

(a) g, and g, are incomparable for different x,y € X;
(b) Vo,y € X (z #y = |2 €7 ZF gl > 0);
(¢) {qz:z € X} =Min(F).




(B, O1) and minimal elements

Example

A set of the form |J, . x(¢. T) must not be closed, even when
{¢qz : ¥ € X'} is the set of minimal elements.
If {¢; : * € X} is an infinite antichain then

UxeX(Qz No{gz:zeX} =B




(B, O1) and minimal elements

Example

A set of the form |J, . x(¢. T) must not be closed, even when
{¢qz : ¥ € X'} is the set of minimal elements.
If {¢; : * € X} is an infinite antichain then

UxeX(Qz No{gz:zeX} =B

Question

When is the set of a form (J, ¢y (g T), where {q, : z € X} is the
set of its minimal elements, closed in the space (B, O)?

4
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Definition (J. Gerlits, I. Juhész, Z. Szentmiklossy, 2001.)
Let (X, O) be a topological space.

If S is a subbase for the topology O, the space (X, Q) is an
S-countably compact (S-CC) space iff

VAe XYz e XVSeS(zeS=|SNA|=w).

x is S-accumulation point

(X, ) is a subbase countably compact (SCC) space iff there
exists a subbase S for O such that (X, O) is an S-CC space.
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Definition (J. Gerlits, I. Juhész, Z. Szentmiklossy, 2001.)
Let (X, O) be a topological space.

If S is a subbase for the topology O, the space (X, Q) is an
S-countably compact (S-CC) space iff

VAe XYz e XVSeS(zeS=|5NAl=w).

x is S-accumulation point

(X, ) is a subbase countably compact (SCC) space iff there
exists a subbase S for O such that (X, O) is an S-CC space.

Theorem (J. Gerlits, I. Juhasz, Z. Szentmiklossy, 2001.)
Each Lindelof SCC space is compact.
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Subbase countably compact spaces

Definition

Let X #0. S C P(X) is a T1 SCC subbase iff

() US = X

(ii) Ve,y e X (z#£y=35€S(xeSFy),

(i) VAe [ XYz e XVS e S(z e S= |SNA| =w).

Topology generated by a countable T7 SCC subbase
S ={Sk: k € w} on X is T1 Hausdorff compact topology on X
and vice versa.

If (X,0) is a compact second-countable T3 space, then | X| < w
or | X|=rc.
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A kind of "inverse" mapping

Definition
For f: X — P(Y) let ’ * e
f*:Y — P(X) be defined by °q°° *
() — : 1C e+ 9
[ ly) ={zreX:yeflz)} '
1 2 3 4 5

[r(b) = {2747 5}
If f: N — Nsuch that f(n) = {k-n:k € N} then

f*={k: kis a divisor of n}




(P(w), O)

Topology No. 3



(P(w), O)

Topology No. 3

For a mapping B : X — P(w) by 78 = {(#,B,) : © € X} we
denote the corresponding nice name for a subset of X.




(P(w), O)

Topology No. 3

For a mapping B : X — P(w) by 78 = {(#,B,) : © € X} we
denote the corresponding nice name for a subset of X.

If G is a P(w)-generic filter over V' then
G = {k} 1 for some k € w




(P(w), O)

Topology No. 3

For a mapping B : X — P(w) by 78 = {(#, B,) : v € X} we
denote the corresponding nice name for a subset of X.

If G is a P(w)-generic filter over V' and S = B*, then
G = {k} 1 for some k € w and (78)g = Si.




(P(w), O)

Topology No. 3

For a mapping B : X — P(w) by 78 = {(#, B,) : v € X} we
denote the corresponding nice name for a subset of X.

If G is a P(w)-generic filter over V' and S = B*, then
G = {k} 1 for some k € w and (78)g = Si.

Lemma

Let B: X — P(w) be one-to-one mapping and S = B*. If

F = U,ex(Bz 1), then the following conditions are equivalent:
(a) Elements B,, x € X, are incomparable;

(b) Ve,ye X (e #4Ay=Tkew (x €St Zy));

(¢) {Bg:z € X} = Min(F).
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(P(w), O") and closed sets

Lemma

If B: X — P(w), S=B*, 78 ={(# B,) : v € X} and

F = U,ex(Bz 1) then the following conditions are equivalent:
(a) F is closed in P(w);

(b) Vf:w— X Jr € X B, C limsup(By));

() VAe[X|*Tre X 1lkierB = |7BnA| = ;

(d) VAe XY Tre X Vkcw (x €S = |SkNA| =w).

—_— —




(P(w), O") and characterisation of closed stes

Theorem

If B: X — P(w), S=DB*and F =|J,cx B: 1 then the

following conditions are equivalent:

(a) F e FI\{w}

(b) & ={Sk : k € w} is a Ty SCC subbase (it generates some
second countable compact topology on X);

(¢) § ={Sk:k € w} is a subbase for a T; compact second
countable topology on X.




(P(w), O") and characterisation of closed stes

Theorem

If B: X — P(w), S=DB*and F =|J,cx B: 1 then the

following conditions are equivalent:

(a) F e FI\{w}

(b) & ={Sk : k € w} is a T1 SCC subbase (it generates some
second countable compact topology on X);

(¢) § ={Sk:k € w} is a subbase for a T; compact second
countable topology on X.

Theorem

If F = Upemin(r) B 1 1s closed in P(w) then [Min(F)| < w or
[Min(F)| = .
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(P(w), O1) and examples of closed sets

Example

We will construct a closed set on P(w) using the cofinite
topology on w. Let [w]<¥ = {K} : k € w}.

A countable subbase is Sy = {w \ K}, : k € w}.

Then B,, = {k € w:n & K} and it generates the closed set

F:U{k‘Ew:ngKk}T.

new

Choosing another subbase, for instance, {Sy = w \ {k} : k € w},
then B, = w \ {n} and we obtain the closed set

F=Jw\{nh)1={Acw:|w\ 4 <1}.

new
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Example

Let {A, :n €w} C P(w)\ {0} be a family of disjoint sets, and
let B, =w\ A,.

Let FF =U,c, Bn 1.

By, n € w, are incomparable and F' is closed.

Then Sy ={new:keB,}={new: k& A}

If k € w\ Upen, An, then S, = w, otherwise, if k € A, then

Sk =w\ {n}.




(P(w), O1) and examples of closed sets

Example

Let {A, :n €w} C P(w)\ {0} be a family of disjoint sets, and
let B, =w\ A,.

Let FF =U,c, Bn 1.

By, n € w, are incomparable and F' is closed.

Then Sy ={new:keB,}={new: k& A}

If k € w\ Upen, An, then S, = w, otherwise, if k € A, then

Sk =w\ {n}.

We have obtained the same subbase as in the second part of
previous example.




(P(w), 0)

Topology No. 4

Using the a priori operator A!(x) = (liminf ) | we obtain the
topology denoted by O}, which is, in sense od Boolean algebras,
dual topology to O'




(P(w), 0%)

Topology No. 5



(P(w), 0%)

Topology No. 5

Definition

The family P* = O U O! is a subbase for a topology, namely
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Topology No. 5

Definition

The family P* = O U O! is a subbase for a topology, namely
O*.

Theorem (Not just in P(w))

limp+ = lim,_ .
@) s

Question
When does it hold O* = 7,7

Theorem
On Boolean algebra P(w) there holds O* = 75 = 7.
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