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P (κ) with the product topology
Topology No. 1

Each subset of κ can be represented, by its characteristic
function, as an element of the Cantor cube 2κ.

The product topology on 2κ will be denoted by τc.

The space 〈2κ, τc〉 is a zero-dimensional, homogenous, Hausdorff
and compact space.
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B with the sequential topology

For a sequence x let
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∧
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∨
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∨
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∧
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A sequence x algebraically converges to a point a (λA(x) = a) iff
lim supx = lim inf x = a

The sequential topology τs is the maximal topology such that
algebraic convergence implies topological convergence.

〈B, τs〉 is a sequential T1 homogenous space
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〈P (κ), τs〉
Topology No. 2

Theorem (B. Balcar, W. Glówczyński, T. Jech, 1998)
The space 〈P (κ), τs〉 is:

• Hausdorff
• regular iff κ = ω

• Fréchet iff κ < b

• sequentially compact iff κ < s

• compact iff κ = ω

• zero-dimensional
• τc ⊂ τs
• τc = τs iff κ = ω
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Let λ↑(x) = (lim supx) ↑ be an a priori limit operator on a
complete Boolean algebra B.

The maximal topology in which λ↑-convergence implies
topological convergence is denoted by O↑.

〈B,O↑〉 is a sequential connected T0 compact space, which is
never T1.
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〈B,O↑〉 and closed sets

Closed sets are upward closed sets, i.e. F =
⋃
b∈F (b↑) and

closed to the infimums of decreasing sequences.

Question
Can we minimize a set A ⊂ F such that F =

⋃
b∈A(b↑)?
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〈B,O↑〉, closed sets and ccc

Theorem
If B is a ccc c.B.a., for each closed set F there holds

F =
⋃
b∈Min(F )(b↑),

where Min(F ) is the set of minimal elements of F .

Example
If B is not a ccc c.B.a., then there exists strictly decreasing
sequence 〈aα : α < ω1〉.

{aα : α < ω1} =
⋃
α<ω1

(aα ↑)

but this set does not have minimal elements.
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〈B,O↑〉 and sets of form
⋃
x∈X(qx ↑)

Lemma

Let X be a non empty set and {qx : x ∈ X} ⊂ B.
Let τ = {〈x̌, qx〉 : x ∈ X} and F =

⋃
x∈X(qx ↑).

If x 6= y ⇒ qx 6= qy, then the following conditions are equivalent:

(a) qx and qy are incomparable for different x, y ∈ X;
(b) ∀x, y ∈ X (x 6= y ⇒ ||x̌ ∈ τ 63 y̌|| > 0);
(c) {qx : x ∈ X} = Min(F ).
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〈B,O↑〉 and minimal elements

Example
A set of the form

⋃
x∈X(qx ↑) must not be closed, even when

{qx : x ∈ X} is the set of minimal elements.
If {qx : x ∈ X} is an infinite antichain then⋃

x∈X(qx ↑) ⊃ {qx : x ∈ X} = B

Question
When is the set of a form

⋃
x∈X(qx ↑), where {qx : x ∈ X} is the

set of its minimal elements, closed in the space 〈B,O↑〉?
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Subbase countably compact spaces

Definition (J. Gerlits, I. Juhász, Z. Szentmiklóssy, 2001.)
Let 〈X,O〉 be a topological space.

If S is a subbase for the topology O, the space 〈X,O〉 is an
S-countably compact (S-CC) space iff
∀A ∈ [X]ω ∃x ∈ X ∀S ∈ S (x ∈ S ⇒ |S ∩A| = ω).
x is S-accumulation point

〈X,O〉 is a subbase countably compact (SCC) space iff there
exists a subbase S for O such that 〈X,O〉 is an S-CC space.

Theorem (J. Gerlits, I. Juhász, Z. Szentmiklóssy, 2001.)
Each Lindelöf SCC space is compact.
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Subbase countably compact spaces

Definition
Let X 6= ∅. S ⊂ P (X) is a T1 SCC subbase iff
(i)

⋃
S = X;

(ii) ∀x, y ∈ X (x 6= y ⇒ ∃S ∈ S (x ∈ S 63 y));
(iii) ∀A ∈ [X]ω ∃x ∈ X ∀S ∈ S (x ∈ S ⇒ |S ∩A| = ω).

Topology generated by a countable T1 SCC subbase
S = {Sk : k ∈ ω} on X is T1 Hausdorff compact topology on X
and vice versa.

If 〈X,O〉 is a compact second-countable T1 space, then |X| ≤ ω
or |X| = c.
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A kind of "inverse" mapping

Definition
For f : X → P (Y ) let
f∗ : Y → P (X) be defined by
f∗(y) = {x ∈ X : y ∈ f(x)}.
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If f : N→ N such that f(n) = {k · n : k ∈ N} then

f∗ = {k : k is a divisor of n}
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〈P(ω),O↑〉
Topology No. 3

For a mapping B : X → P (ω) by τB = {〈x̌, Bx〉 : x ∈ X} we
denote the corresponding nice name for a subset of X.

If G is a P (ω)-generic filter over V

and S = B∗,

then
G = {k} ↑ for some k ∈ ω

and (τB)G = Sk.

Lemma

Let B : X → P (ω) be one-to-one mapping and S = B∗. If
F =

⋃
x∈X(Bx ↑), then the following conditions are equivalent:

(a) Elements Bx, x ∈ X, are incomparable;
(b) ∀x, y ∈ X (x 6= y ⇒ ∃k ∈ ω (x ∈ Sk 63 y));
(c) {Bx : x ∈ X} = Min(F ).
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〈P(ω),O↑〉 and characterisation of closed stes

Theorem

If B : X → P (ω), S = B∗ and F =
⋃
x∈X Bx ↑ then the

following conditions are equivalent:
(a) F ∈ F↑ \ {ω};
(b) S = {Sk : k ∈ ω} is a T1 SCC subbase (it generates some

second countable compact topology on X);
(c) S = {Sk : k ∈ ω} is a subbase for a T1 compact second

countable topology on X.

Theorem

If F =
⋃
B∈Min(F )B ↑ is closed in P (ω) then |Min(F )| ≤ ω or

|Min(F )| = c.
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〈P(ω),O↑〉 and examples of closed sets

Example

We will construct a closed set on P (ω) using the cofinite
topology on ω. Let [ω]<ω = {Kk : k ∈ ω}.

A countable subbase is Sk = {ω \Kk : k ∈ ω}.
Then Bn = {k ∈ ω : n 6∈ Kk} and it generates the closed set

F =
⋃
n∈ω
{k ∈ ω : n 6∈ Kk} ↑ .

Choosing another subbase, for instance, {Sk = ω \ {k} : k ∈ ω},
then Bn = ω \ {n} and we obtain the closed set

F =
⋃
n∈ω

(ω \ {n}) ↑= {A ⊂ ω : |ω \A| ≤ 1}.
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then Bn = ω \ {n} and we obtain the closed set

F =
⋃
n∈ω

(ω \ {n}) ↑= {A ⊂ ω : |ω \A| ≤ 1}.
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〈P(ω),O↑〉 and examples of closed sets

Example

Let {An : n ∈ ω} ⊂ P (ω) \ {∅} be a family of disjoint sets, and
let Bn = ω \An.

Let F =
⋃
n∈ω Bn ↑.

Bn, n ∈ ω, are incomparable and F is closed.
Then Sk = {n ∈ ω : k ∈ Bn} = {n ∈ ω : k 6∈ An}.
If k ∈ ω \

⋃
n∈ω An, then Sk = ω, otherwise, if k ∈ An, then

Sk = ω \ {n}.
We have obtained the same subbase as in the second part of
previous example.
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〈P(ω),O↓〉
Topology No. 4

Using the a priori operator λ↓(x) = (lim inf x) ↓ we obtain the
topology denoted by O↓, which is, in sense od Boolean algebras,
dual topology to O↑



〈P(ω),O∗〉
Topology No. 5

Definition
The family P∗ = O↑ ∪ O↓ is a subbase for a topology, namely
O∗.

Theorem (Not just in P (ω))

limO∗ = limτs .

Question
When does it hold O∗ = τs?

Theorem
On Boolean algebra P (ω) there holds O∗ = τs = τc.
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